

Systems theory

Hanna Ahlström, PhD Senior Advisor and Expert ESG regulation <u>hanna@era.as</u> @AhlstromHanna

Content of lecture

1.The sustainability challenge

- 1.1. Global interconnectivity
- 1.2. Contemporary business practices

2. Systems thinking

2.1. Systems2.2. Systems theory2.2. Social-ecological systems thinking

3. Systems thinking and the law

3.1. Law-making fit for purpose3.2. Systems thinking in future practice

4. Conclusions

1. The sustainability challenge

Nine Planetary Boundaries

HRA

The social foundation within planetary boundaries

1.1. Global interconnectivity

JERA

Complexity

A complex system is one that it is open, non-linear, with interconnected and interacting elements

e.g. Preiser et al. (2018)

Complexity

- governance systems at an aggregate level
- making procedures in various combination

• One of the most significant benefits with using a complex systems lens is that it allows us to study

• Complex systems are aggregations of regulations, institutions, rules, actors, norms, and decision-

Orsini et al. (2019, p. 3)

HRA

1.2. Contemporary business practices

•We are dealing with a deep complexity and opacity, through organisation, control and governance decoupling, financial engineering and increasing digitalization

Anker-Sørensen (2019)

and the reality

Sjåfjell (2020)

•This complexity widens the gap between business theories

Corporate activities frequently violate the rights of workers, consumers and communities across global value chains

Sjåfjell & Taylor (2015); Sjåfjell & Bruner (2019)

2. Systems thinking

AE**A**

2.1. Systems

stems

"purpose" '

Meadows (2008, p. 188)

preserving, and sometimes evolutionary behaviour'

Meadows (2008, p. 12)

A system is 'a set of elements or parts that is coherently organised and interconnected in a pattern or structure that produces a characteristic set of behaviours, often classified as its "function" or

A system is 'more than the sum if its parts' and 'may exhibit adaptive, dynamic, goal-seeking, self-

2.2. System theory

HRA

Systems theory

- Many researchers in different disciplines have highlighted the need to use a systems approach when studying complex systems
- Biologist Ludwig von Bertalanffy that is considered the founder of systems theory
- A systems approach has also been used in areas such as behavioral theory within companies
- Systems thinking can help to understand and deal with complexity in a better way than linear thinking and is particularly relevant within the field of sustainability

2.3. Social-ecological systems thinking

Anthopocene

Social-ecological systems

3. Systems thinking and the law

3.1. Law-making fit for purpose

AE**A**

Polycentric governance

V. Ostrom et al. (1961); e.g. E. Ostrom (2010); Toonen (2010)

From 'weak' to 'strong' polycentricity. The figure illustrates different processes of polycentric coordination and order. (A) illustrates a simple communication network that allows for mutual adjustment in multi-actor settings. (B) illustrates a stronger from of coordination as it combines communication linkages (dotted lines), with formal partnerships arrangements (regular lines). (C) denotes a stronger form of polycentricity involving tangible joint projects/experiments between actors (shaded areas) often with overlap. (D) is the strongest from of polycentric order, and involves strong formal ties between key actors as well as a suite of joint projects and the evolution of rules.

Institutional fit

Earth System Law

Kotzé and Kim (2019); Kotzé (2020)

3.2. Systems thinking in future practice

Sustainable Market Actors For Responsible Trade (SMART)

SMART analysed the regulatory complexity within which European market actors operate. With a focus especially on international supply chains of products sold in Europe, the aim was to find out what prevents and what promotes a shift towards sustainable development.

HRA

Entry point and overview of the SMART approach

- Systems thinking based on sustainability science
- Interdisciplinary, multi-level and polycentric regulatory analysis
- Comparative regulatory mapping and analysis

Sjåfjell & Ahlström (2021)

4. Conclusion

System thinking facilitates

- a better understanding of how to see the relationship between structure and behaviour
- managing, adapting and seeing a wide range of choices that are presented to society
- the identification of root causes of problems and enables the identification of new opportunities
- revealing interconnectivity of problems
- —> which can be better structured and evaluated and eventually compared
- —> enable for priority setting

Innovation premises #1

The future dosen't exist. It's created!

Hanna Ahlström hanna@era.as @AhlstromHanna

